Some new modified cosine sums and $L^{1}$-convergence of cosine trigonometric series
نویسندگان
چکیده
منابع مشابه
Some New Modified Cosine Sums and L1-convergence of Cosine Trigonometric Series
In this paper we introduce some new modified cosine sums and then using these sums we study L1-convergence of trigonometric cosine series.
متن کاملOn Some Power Sums of Sine or Cosine
In this note, using the multisection series method, we establish the formulas for various power sums of sine or cosine functions.
متن کاملCosine Products, Fourier Transforms, and Random Sums
one gets the first actual formula for 7r that mankind ever discovered, dating from 1593 and due to Frangois Viete (1540-1603), whose Latinized name is Vieta. (Was any notice taken of the formula's 400th anniversary, perhaps by the issue of a postage stamp?) From the samples of a function t(x) at equally spaced points x", n E z, one can reconstruct the complete function with the aid of sin x/x, ...
متن کاملInteger fast modified cosine transform
In this paper, an efficient implementation of the forward and inverse MDCT is proposed for even-length MDCT. The algorithm uses discrete cosine transform of type II (DCT-II) to compute the forward MDCT and their inverse DCT-III to compute the inverse MDCT. The lifting scheme is used to approximate multiplications appearing in the MDCT lattice structure where the dynamic range of the lifting coe...
متن کاملA Note on Cosine Power Sums
where ⌊x⌋ denotes the largest integer not greater than x. Under certain conditions, these cosine power sums can be determined exactly, without approximations [5]. If f(x) = a0 + a1x+ a2x 2 + · · ·+ anx + · · · is a finite or convergent infinite series, then for 0 ≤ r < n the sum arx r + ar+nx r+n + ar+2nx r+2n + · · · is given by the multisection formula (see [1, Ch. 16], [4, Ch. 4, S. 4.3] and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Archivum Mathematicum
سال: 2013
ISSN: 0044-8753,1212-5059
DOI: 10.5817/am2013-1-43